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The Ten Secrets of Embedded Debugging 
 

Abstract 
Developers of embedded software face unique challenges, including running reliably for extended periods, 
with limited memory and processing power.  To build cost-effective systems, embedded programmers must 
squeeze performance and find errors before they reach the field.  From seeking the needles in the haystack to 
understanding where CPU cycles are truly used, this paper summarizes experience with thousands of real-
world systems into ten simple rules for building better real-time software. 

The Oracle 
Once upon a time, a developer seeking a higher plane of embedded proficiency climbed the Mountain of 
Experience to consult the advice of The Oracle at the summit. The Oracle knows that embedded programmers 
face perils not known to mere mortals, such as devices that must run for months without crashing, strict 
memory and processing limits, and the mysteries of real-world interactions.   
Now, The Oracle won’t help just any programmer.  New programmers, still flush with classroom memories 
of template libraries and single-step debuggers cannot absorb his wisdom.  It takes many frustrating years of 
embedded experience to appreciate the value of enlightenment.  Each day, programmers come seeking 
answers to questions like, "How can I write faster code?" and "Which compiler is best?"  The Oracle rejects 
these immature supplicants with a terse "Ask not questions of little import.  Only he who is worthy may 
understand my answers." 
Our developer asked The Oracle, "O Oracle, how can I see and understand what my system is doing?"   
The Oracle responded, "Your question shows unusual maturity, young pilgrim, for understanding is the key 
that opens the door to improvement.  It is better to light a single candle than to curse the darkness."   
And The Oracle shared these Ten Secrets, the results of years atop the Mountain of Experience: 

1. Know your tools 
2. Find memory problems early 
3. Optimize through understanding 
4. Don’t put needles in your haystack 
5. Reproduce and isolate the problem  
6. Know where you've been 
7. Make sure your tests are complete 
8. Pursue quality to save time 
9. See, understand, then make it work 
10. Harness the beginner’s mind 

The Secrets 

1. Know Your Tools 
“When all you have is a hammer, all problems look like nails.” 

Good mechanics have many tools; you can’t fix a car with just a hammer.  Like good mechanics, good 
programmers need to be proficient with a variety of tools.  Each has a place, each has a Heisenberg effect, 
each has power.   
Tools promise great insight into system operation.  Tools designed for embedded systems let you see—live, 
as it happens—what your program is doing, what resources it’s using, and how it interacts with the external 
world.  The insight they provide is truly powerful; you can often quickly spot problems, issues, or 
inefficiencies that would take days to discover by other means.   
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To deliver productivity, tools have to provide more than powerful visualization: they must also be usable on 
the system.  Real-time systems are much more sensitive to intrusion than desktop systems.  Will that profiler 
slow your system?  Not a problem for your GUI.  But if it makes the network interface drop packets, you may 
not be able to profile your embedded application at all. 
Tools must also be used.  Inserting instrumentation or code changes requires time and effort.  Even simple 
recompilation with new flags can be a barrier, especially for larger team-built applications.  As a result, most 
programmers don’t immediately turn to the tool.  They’ll try changing the code and recompiling many times 
first. While each step seems insignificant (“I’ll just try a printf.”), this pot-shot technique is a huge drain on 
productivity.  Fear or inertia is also factor; many programmers don’t even try the tools they already own. 
Get to know your toolbox.  Here’s a short introduction to the most popular types of tools. 

ICE and JTAG 
In-circuit emulators (ICE) and JTAG debuggers allow you to carefully control the running chip.  During the 
early stages of developing a custom board, an ICE is indispensable.  There’s just no substitute for full control 
of the processor when you don’t trust the hardware.  You can start debugging the board as soon as it comes 
out of reset, allowing you to see everything going on in those first crucial microseconds.  You can debug code 
in ROM.  You can usually ignore the minimal intrusion.  However, once the OS is up, hardware tools 
sometimes fall short.  Hardware emulators aren’t the same as the production CPU.  They don’t do well 
debugging multiple processes.  They aren’t nearly as flexible as a full set of software tools.  

Printf 
A simple “printf” statement (or your language’s equivalent) is perhaps the most flexible and primitive tool.  
Printing out variable values allows you to discover how your program is operating.  Unfortunately, printf is 
both clumsy to use (requiring code changes and recompiling) and quite intrusive because it greatly slows 
execution.  It also can produce reams of data that obscures the real problem. 

Source-level debuggers 
A source-level debugger lets you step through your code, stop it, and then examine memory contents and 
program variables.  It’s the fundamental first tool to bear on a problem. 

Data monitors 
Data monitors show you what your variables are doing without stopping the system.  Data monitors can 
collect data from many variables during execution, save the histories, and display them in a live graphical 
format. 

OS monitors 
Operating system monitors display events, such as task switches, semaphore activity, and interrupts.  They let 
you visualize the relationships and timing between operating system events.  They easily reveal issues like 
semaphore priority inversion, deadlocks, and interrupt latency. 

Performance profilers 
Profilers measure where the CPU is spending its cycles.  A profiler can tell you where your bottlenecks are, 
how busy the processor is, and give you hints on where to optimize.  Because they show where the CPU has 
been, profilers also give you insight as to what’s really running—a valuable peek into the system’s operation. 

Memory testers 
Memory testers search for problems in the use of memory.  They can find leaks, fragmentation, and 
corruption.  Memory testers are the first line of attack for unpredictable or intermittent problems. 

Execution tracers 
Execution tracers show you which routines were executed, who called them, what the parameters were, and 
when they were called.  They are indispensable for following a programs’ logical flow.  They excel at finding 
rare events in a huge event stream. 
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Coverage testers 
Coverage testers show you what code is being executed.  They help ensure that your testing routines exercise 
all the various branches through the code, greatly increasing quality.  They can also aid in eliminating dead 
code that is no longer used. 

2. Find Memory Problems Early 
Memory problems are insidious.  There are three main types: leaks, fragmentation, and corruption.  The best 
way to combat them is to find them early. 

Leaks 
Memory leaks are the best known “hidden” programming problem.  A memory leak arises when a program 
allocates more and more memory over time.  Eventually, the system runs out of memory and fails.  The 
problem is often hidden; when the system runs out of memory, the failing code often has nothing to do with 
the leak.   
Even the most diligent of programmers sometimes cause leaks.  The most obvious cause is programming 
error; code allocates memory and fails to free it.  Anyone who has traced a leak in a complex piece of code 
knows these can be nearly impossible to find.  Much more insidious (and common) leaks occur when a 
library or system call allocates memory that doesn’t get freed.  This is sometimes a bug in the library, but 
more often it is a mistake in reading the API documentation. 
For example, Nortel was porting a large UNIX networking application to VxWorks.  They found a leak 
during their final burn-in testing. The leak slowly ate 18 bytes every few seconds, eventually causing a crash. 
There was no indication where the leak was coming from or why it was occurring.  Poring over the code for 
weeks didn’t provide any clues. 
Ten minutes with a leak detection tool solved the mystery.  It turned out that inet_ntoa, a simple network call, 
allocated memory in VxWorks, but not in UNIX.  The call was well documented; there was simply a 
difference from the UNIX implementation.  A one-line change fixed the problem. 
Nortel was lucky.  Unit and system testing rarely reveal leaks.  A slowly leaking system may run for days or 
months before any problem surfaces.  Even extended testing may not find a leak that only occurs during one 
high-traffic portion of the code during real use. 
In fact, most leaks are never detected, even in fielded systems.  They simply result in “random” failures, 
blamed on hardware, loads, power surges, operator error, or whatever happened to be going on at the time.  In 
the best case, reliability isn’t critical and users learn to reboot periodically.  In the worst case, leaks can 
destroy the customer’s confidence, make the product worthless or dangerous, and cause the product or project 
to fail. 
Since leaks are so damaging, many methods have been developed to combat them.  There are tools to search 
for unreferenced blocks or growing usage, languages that take control away and rely on garbage collection, 
libraries that track allocations, even specifications that require programmers to forgo run time-allocated 
memory altogether.  Each technique has pros and cons, but all are very effective compared to ignorance.  It’s 
a pity so many systems suffer from leaks when effective countermeasures are so available.  Responsible 
programmers test for leaks. 

Heap fragmentation 
Embedded systems face an even sneakier memory challenge: fragmentation.  As memory is allocated and 
freed, most allocators carve large blocks of memory into variable-sized smaller blocks.  Allocated blocks tend 
to be distributed in the memory, resulting in a set of smaller free blocks to carve out new pieces.  This process 
is called fragmentation.  A severely fragmented system may fail to find a 64k block, even with megabytes of 
free memory.  Even paged systems, which do not suffer so badly, can become slow or wasteful of memory 
over time due to inefficient use of blocks. 
Some fragmentation is a fact of life in most dynamically allocated memory.  It’s not a problem if the system 
settles into a pattern that keeps sufficient memory free; the fragmentation will not threaten long-term program 
operation.  However, if fragmentation increases over time, the system will eventually fail. 
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How often does your system allocate and free memory?  Is fragmentation increasing?  How can you code to 
reduce fragmentation?  In most systems, there is only one way to answer these questions: get a tool that 
shows you the memory map of your running system.  Understand what is causing the fragmentation and then 
redesign (often a simple change) to limit its impact. 

Memory corruption 
Any code written in a language that supports pointers can corrupt memory.  There are many ways corruption 
can occur: writing off the end of an array, writing to freed memory, bugs with pointer arithmetic, dangling 
pointers, writing off the end of a task stack, and other mistakes.  In practice, we find that most corruption is 
caused by some saved state that isn’t cleaned up when the original memory is freed.  The classic example is a 
block of memory that is allocated, provided to a library or the operating system as a buffer, and then freed and 
forgotten.  Corruption is then waiting to happen at some “random” time in the future.  The corrupted system 
will then fail (or not) at some other “random” time.  Corrupted systems are completely unpredictable.  The 
errors can be hard to find, to say the least. 
By the way, don’t delude yourself that a “protected memory” system prevents corruption.  Memory protection 
only stops other processes from cross-corrupting your process.  Protected processes are perfectly capable of 
self-corrupting their own memory.  In fact, most corruption is self-corruption.  Most corruption errors result 
from writing to a location “near” other memory (off the end of an array, through an “old” pointer to memory 
that is now free, etc.).  There is a high probability that the bad memory location is still in the writable address 
space of the process, and corruption will result.  The only way to ensure there is no corruption is by language 
support or testing. 

3. Optimize Through Understanding  
Real time is more about reliability than it is about speed.  That said, efficient code is critical for many 
embedded systems.  Knowing how to make your code ‘zing’ is a fundamental skill that every embedded 
programmer must master. 
The first rule is to trim the fattest hog first.  So, given an application with a 20,000-line module and a 20-line 
function, where do you start optimizing?   
Ha!  That’s a trick question.  The 20-line function could be called thousands of times, or spin forever on one 
line.  The point: making the code run fast is the easy part.  The hard part?  Knowing which code to make run 
fast. 
An example may illustrate this.  Loral was building a robotic controller to investigate possible space 
operations.  It was a complex system combining many devices, complex equations, network interfaces, and 
operator interfaces.   
One day, the system stopped working.  The CPU was 100% busy.  The control loop that usually ran 300 times 
a second barely made 40.  Everyone claimed that Nothing Has Changed.  
To make a long story short, with the help of a simple profiler, the problem was tracked to a matrix transpose 
subroutine that was eating 80% of the CPU.  A seemingly trivial (and forgotten) change in a controller 
equation caused the transpose code to run each loop. The transpose routine allocated and freed temporary 
memory; since memory allocation is slow, performance suffered.   
Optimizing every line of code, replacing all the hardware, switching compilers, and staring at the system 
forever would never have found this problem.  This is typical; when it comes to performance optimization, 
97.3% of the time, a small change in the right place makes all the difference.  All the coding tricks on the 
planet don't matter if you don't know where to look. 
Performance problems can even masquerade as other problems.  If the CPU doesn’t respond to external 
events, or queues overflow, or packets are dropped, or hardware isn’t serviced, your application may fail.  
And you may never suspect a performance problem. 
Fortunately, performance profiling is simple and powerful.  It will also reveal things you never expected, 
giving you better overall understanding.  How many times is a data structure copied?  How many times are 
we accessing the disk?  Does that call involve a network transaction?  Have we correctly assigned task 
priorities?  Did we remember to turn off the debugging code? 
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Profiling real-time systems presents a unique challenge.  You need a profiler when you’re running out of 
CPU.  But most profilers use a lot of CPU.  And you can’t slow down the system and still get an accurate 
picture of what’s going on.  The moral: be sure you understand the Heisenberg effect of your profiler— every 
measurement changes the system. 
We’ll close this section with another story.  ArrayComm was building a wireless packet data base-station and 
user terminal.  The product was nearly ready to ship, but it couldn’t handle the high-load stress tests. 
Optimizing didn’t help.  Timing critical code sections didn’t help.  Intense management oversight didn’t help 
either (strange…).  Running out of options, they were considering a redesign with a faster processor—a 
decision that would costs months of time and millions of dollars.   
In desperation, they profiled the system.  In a matter of minutes they found that over one-third of the cycles 
were going to a function buried in a third-party protocol stack.  Turning off an optional attribute-checking 
feature that had been turned on for debugging nearly doubled the system throughput.  The product shipped 
two weeks later. 
Know how your CPU is executing your code.  It’s the only path to efficiency. 

4. Don’t Put Needles in Your Haystack  
Finding a needle in the haystack is a good metaphor for much of debugging. 
So how do you find needles?  Start by not dropping them in the haystack.  All developers know that nagging 
feeling that they’re cutting a corner and creating a bug for the future.  Stop!  Listen to your inner voice!  
Follow your good coding and design guidelines, check your assumptions, rethink your algorithms.  If nothing 
else, put an easily found tag in a comment that this code is suspect. 
There are many good sources of advice on how to design embedded programs.  Dave Stewart’s paper, 
“Twenty-Five Most Common Mistakes with Real-Time Software Development” (http://www.embedded-
zone.com/esc/mistake.pdf) is a great start. 
The next step is to seek needles before they poke you.  For instance, tracing is great when you have an 
obscure problem.  But its real power may be as a preventative.  Regular scans for OS calls that return errors 
can uncover many problems early in the development and test cycle.  Think of it as a regular search for buggy 
needles in the haystack of your system. 
How to do this?  Use your trace tool to scan for error returns from all OS function calls and common APIs.  
Investigate any surprises.  Do any calls to malloc fail?  Are calls timing out unexpectedly?  Check parameter 
values too.  Are any pointer parameters into key functions NULL?  Are you calling anything much more, or 
much less, than you expected?  Tracing will give you that critical “feel” for the code.  Doing it regularly, 
before needles become problems, will keep your hay safe. 

5. Reproduce and Isolate the Problem 
If you do end up with a needle, divide the haystack.  The first step in debugging a complex team-developed 
application is often a process of isolating the problem.  The trick is to do this effectively.  
If the problem is an intermittent “glitch” problem, then the critical first step is to reliably duplicate the 
problem:  recreate it and defeat it.  Get a sequence, any sequence, that reliably shows the problem and you’re 
halfway there.  While you’re testing, write everything down.  Keep logs of anything that changes.  An 
organized, meticulous approach is critical to isolating the problem.   
Once you have a way to duplicate the problem reliably, you can start dividing the haystack.  Turn features off, 
#ifdef out whole blocks, divide the system into the smallest piece that still exhibits the problem. 
With tough problems, break out the toolbox.  If you suspect a damaged variable, trigger your ICE to stop the 
system when it changes.  Track it with a data monitor.  Use a tracing tool to get a detailed history of function 
calls, including the passed parameters.  Check for memory corruption.  Check for stack overflow.   
Let’s illustrate with an example. During development, Candera (formerly Confluence Networks) noticed a 
strange problem that made the system clock jump ahead by a huge number.  With an ICE, they traced the 
problem to a bad parameter passed to an operating system call (message receive).  But this wasn’t enough 
information to fix the bug.  The OS call wasn’t to blame; someone was passing it a bad parameter.  Of course, 
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that raises a needle-in-the-haystack problem: there were a lot of lines of code, and the particular OS call was 
heavily used… In this case, a trace tool was used to record all the invocations of the OS call, quickly 
identifying the offending code.  

6. Know Where You've Been  
Hansel and Gretel were smart to drop a trail of bread crumbs.  A backwards-traceable record is a great way to 
make sure you understand future problems.  Hansel and Gretel’s only real mistake (besides trusting the witch) 
was not using a more permanent means of recording their progress.  Don’t make their same mistake. 
When you get your application or module working in any significant capacity, checkpoint it.  Later, when it 
stops working, even though Nothing Has Changed, you will have a baseline to check your assumptions. 
How do you do this?  Use a source control system; when the code works, check in a tagged version so you 
can diff with future states.  Run benchmarks to document the level of performance you should expect from 
various modules.  Take traces of operating system behavior, key variables, and memory usage.  Check those 
in with the working code.  These maps of the past will greatly guide you when you’re lost in the future.  This 
habit alone will save you half your debugging time.  The next time your application suddenly takes up 50% 
more CPU or memory, it will be much easier to isolate and identify the problem by looking at the 
characteristics of the previous version. 

7. Make Sure Your Tests are Complete 
How thorough are your tests?  How do you know that?  Coverage testing can tell you; it shows you exactly 
what code has been executed.  Coverage tools verify the completeness of your test suite.   
Experienced coverage testers will tell you that most test suites exercise only 20-40% of the total code.  The 
remainder of the code can include bugs waiting to happen. 
Coverage testing should be part of every QA process.  How many revisions and rewrites has your code gone 
through over the years and releases?  Has your test suite grown with the changes?  Or do the tests only 
exercise the features that existed in version 1.0?  Coverage testing may keep your test group busy, but a solid 
coverage report will make your product manager sleep well. 
There are many different types of coverage testing, ranging from just seeing if every function has been 
entered to checking that every possible way to get through every possible path has been tested.  Most tools 
support various levels.   
The level of testing required depends on the application.  Are you writing code that controls the plane’s in-
seat video or the wing flaps?  For the plane’s video system, verifying that most statements in the program 
have been executed may suffice.  For the wing flaps, you want to know that when a decision evaluates to 
false, the error-handling code is not executing for the very first time.   
Coverage testing will also point out dead code.  Most programs contain 20% or more code that is never 
executed.  Have some of the features been dropped in the latest release?  Is overall code size a concern for 
you?  If so, take a look at your dead code. 
Even if you’re confident that your tests are complete and that you have no dead code, coverage testing can 
reveal latent bugs.  Consider the following code snippet: 

if (i >= 0 && (almostAlwaysZero == 0 || (last = i))) 

This code has a bug; if almostAlwaysZero is ever nonzero, it will set “last” to whatever “i” is, probably not 
what you want.  A condition coverage test will show that this last part of the decision never executed.  By the 
way, function, statement, and decision coverage won’t find the bug; they just ensure that both branches of the 
if statement executed. 

8. Pursue Quality to Save Time 

Studies show that 74% of statistics are made up. 

More seriously, our experience indicates that over 80% of development time is spent… 
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• Debugging your own code 
• Debugging the integration of your code with other code  
• Debugging the overall system 

Worse, it costs 10 to 200 times more to fix a bug at the end of the cycle than at the beginning.  The cost of a 
small bug that makes it to the field can be astronomical.  Even if the bug doesn’t significantly impact 
performance, it can significantly impact perceived quality.  Just ask the developers of the Intel floating-point 
microcode.  Several years ago, Intel shipped millions of chips with an insignificant flaw.  Even though the 
flaw affected almost no applications, it was a public-relations disaster for Intel, caused its first-ever chip 
recall, and forced an eventual charge against company earnings of $475 million. 
You can't achieve quality by saving testing until the end of development. A quality process, such as testing as 
you go, reduces the critical "what's going on" time and greatly speeds development.  Get into the habit of 
testing and scanning for problems every day.  You’ll ship better code faster. 

9. See, Understand, Then Make it Work 
By definition, real-time systems interact with a dynamic world.  Unfortunately, traditional debuggers can’t 
reveal dynamic behavior; debuggers deal only with static values of stopped programs.   
Questions like: 

• How noisy is my sensor? 
• How fast is the queue growing? 
• When did the valve close? 

simply cannot be answered by any tool that stops the execution. These questions deal directly with the 
dynamic behavior of the real-world system.  They can only be answered by a dynamic tool that analyzes your 
program while it's running.  
Think of your embedded program as a car.  A source-code debugger is like a mechanic's garage.  You can 
bring your car in for service; the mechanic will stop the car, put it up on a jack, and see what each part looks 
like.  It's a very valuable service and fixes many problems. However, this static test cannot deal with 
dynamic, real-world issues. 
Consider the question, "Why does the steering wheel shake?"  While the garage may be able to take apart the 
entire steering system and discover a worn part, the garage will never find many causes.  What if the answer 
is "Because you are driving off-road?"  The garage won't find that! Other questions, such as, "How fast am I 
going?" and "How close did I come to hitting that truck?" are just not answerable in the mechanic's shop.  
Stopping the car changes the nature of the system.  
Some questions can only be asked when the car is moving and only be answered by being able to see how the 
car behaves on the road. 
The same is true of most embedded systems.  Many critical real-time systems cannot be stopped at all. For 
example, stopping a network system to discover how long a work queue is getting may cause it to 
immediately overflow.  Placing a breakpoint in the control software for a moving robotic arm could be 
dangerous.  Other operations take place over time.  For instance, a wafer stepper executes many steps of a 
process in order.  You may need to watch the behavior of the system during the entire sequence to evaluate its 
operation. 
Real-time monitors answer the dynamic performance questions.  They don’t stop the system.  They collect 
live data and display them in real time.  There are several types for different types of problems; the most 
common are OS monitors, data monitors, and profilers. 
An example may clarify this.  Figure 1 shows data taken from a motor sensor.  The motor was part of a 
complex system that was vibrating; it wasn't at all clear if this was due to a poor control design, a bad 
mechanical component, or a problem with any of many sensors and motors in the system. 
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The data monitor immediately 
narrowed the problem down to 
a velocity sensor on one motor.  
Further, it showed that the 
error was a sporadic false 
reading of zero.  
The actual sensor was an 
optical encoder, which didn't 
have a direct velocity output. 
Instead, its position output 
signal was used to derive the 
velocity of the motor from a 
high frequency counter that 
counted pulses from the 
encoder. A software driver 
read this counter and computed 
the velocity signal in Figure 1.  
The monitor immediately 
showed that the position signal 
(from the optical encoder) was 
glitch-free. Thus, the encoder 
itself was unlikely to be at 
fault. By monitoring all of the 
variables involved in the 
driver's intermediate 
calculations (from the hardware registers to the final velocity signal) it was easy to determine that the driver 
software was also not to blame. However, the hardware registers showed occasional bad readings. Therefore 
the problem had to be in the encoder card electronics.  
This is exactly the type of problem that's nearly impossible to find with a traditional debugger. It would take 
many breakpoints in just the right places (and a fair bit of luck) to detect that occasional zero reading. 
However, using a data monitor, it took only a few minutes to identify the symptom and pinpoint the problem. 
Without an online monitor, it could have (and probably would have) taken several days to identify the bad 
electronics. 
This is an example of tracking down an unknown problem.  Often, the real value is in just understanding 
what’s going on at a deeper level—you’ll be a better driver if you look out the window and make sure you’re 
still on the road before the wheel begins to shake.  Monitor your system on a regular basis, just to learn it.  
The bottom line: don’t be satisfied that your application works; understand exactly how it works. 

10. Harness the Beginner’s Mind 
In the beginner's mind there are many possibilities, in the expert's mind there are few. 

-- Shunryu Suzuki 

Most debugging is the process of learning more and more about your application.  Marathon, unbroken 
debugging sessions that examine every detail are sometimes the only way to gather sufficient information and 
enough focus to identify and tackle a bug. 
But there is a tradeoff.  During the focused marathon, your mind closes to possibilities.  Assumptions become 
unquestioned facts.  You begin to know things that just aren’t true.  You don’t consider possibilities that you 
rejected for unsound reasons. 
The “beginner’s mind” is a Zen concept of emptying your mind, so it can be open to new solutions.  The 
power of the beginner’s mind should not be underestimated.  A fresh pair of eyes can work wonders.  Even a 
truly empty mind, such as a manager’s, can help. 

Figure 1   Real-Time Monitor Example – Motor Sensor 
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So, when you’re really stuck, when you’ve looked at the problem in every way you can, when every tool in 
your toolbox has failed you, take time off to think.  Go ride a bike.  Take the afternoon off and come back in 
the evening to give yourself a new perspective.  Explain the problem to a friend, a manager, a dog, or the 
wall.  The external challenge to your assumptions is often the catalyst that breaks the barrier down. 

Conclusions 
Debugging is certainly an art.  But like most art, success is a combination of talent, experience, and mastery 
of the tools of the trade.   
The secrets of debugging are not mysterious.  Know your tools.  Avoid the common, dangerous mistakes if 
you can, then check to make sure you’ve succeeded.  Be proactive.  Save data to help you compare the past 
with the present, even though Nothing Has Changed.  Keep your eyes and your mind open. 
And accept the responsibility of excellence.   No system should ship without: 

• Testing for memory leaks and corruption 
• Scanning for performance bottlenecks 
• Collecting a variable trace of key sequences 
• Ensuring sufficient CPU bandwidth margin 
• Evaluating test coverage effectiveness 
• Tracing OS resource usage 
• Recording execution sequences (semaphores, process interactions) of key activities 
• Checking for error returns from common APIs 

If you learn only one thing from The Oracle, learn to integrate strategies to better understand your system into 
your development routine.  It’s hard to find a developer who thinks she has wasted time using a tool, testing 
for quality, or taking the time to understand what the system is doing.  The opposite happens every day.  
Understand that, and The Oracle will keep you out of trouble. 


